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A classical theorem of Hadamard ([1], see also Titchmarsh [2]) states the
following: Let

f@ =3 az?
k=0
be a power-series with radius of convergence 1. Further, suppose that
a, =0ifk £k,,

where ky , k, ,... is a subsequence of 1, 2, 3,... satisfying the condition

kn-l—l
= >0>1. )

Then the circle | z| = 1 is the natural boundary of f(z).
There are several proofs and generalizations of this result. I mention
Fabry’s gap theorem replacing (1) by the weaker condition

Z;—"—M)oasn-»oo. )

For a proof see Landau [3], p. 76. It is known that (2) cannot be replaced
by the still weaker condition

M (kpyy — kn) = 005 3)

see L. Ilieff [4], p. 3. On the other hand, one can ask whether (2) can be
replaced by a weaker condition while imposing conditions on the non-
vanishing coefficients. Results in this direction have been obtained by
R. P. Boas [5] and H. Claus [6].

In a recent paper [7] I gave a proof of Hadamard’s gap theorem based
only on Stirlings formula. Now I prove a “finite form” of a gap theorem.
The main result of the present paper is the following.
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TueoREM 1. Let f(2) = Saoo ayz* be a power-series with radius of con-
vergence 1. Suppose that

= O(k™). @

Denote by a(8) the kth coefficient of the power series of f(z) about the
point 8, where 0 < 8 << 1. Suppose that there is a subsequence &y, k; ,... of
the sequence of natural numbers such that

lim | ay, [ =1 (5)
and with some ¢ >0
k \ oidy
l a(l—c?k)k(gk)‘x > €y ((1 87;) i{) 8k e {6%
8, being a number satisfying k&, = My (M}, is a natural number) and
My = ! =M {7
Zc/igak!,/;/j' \;)
Then the arc of the unit circle e with
log M — log e \1/2
[ - —_— =
I f 1 << Cy ( 1 ) (8>

contains at least one singularity of f(z); here ¢, is an absolute consiant.

It is easy to see that if there are “sufficiently long” gaps in the power-
series f(z), then a dominance of the type (6) will occur. The dominance of
type (6) with arbitrary large M assumes that z = 1 is a singular point.

As an application of Theorem 1, T show that for f(z} whose coefficients
satisfy (4), and (7) the condition (3) assures non-continuability. Further {
give a new proof of Szegd’s theorem [8], according to which a power-series
whose coefficients take only a finite set of values, is either a rational functicn
of a special kind or cannot be continued beyond | z | = 1. Section 1 contains
the proof of Theorem 1, Section 2 some applications.

1. PrRoOF OF THEOREM 1|

Since the singular points of (2} and

ay

z;ég kk +1D -k +m=+ 2) 2 (rr ] f Oz — ty™2 dt




374 P. szUsz

coincide, we may suppose without loss of generality that

/@<l  Jzl<L
First, I prove

LemMmA 1.1. Let f(2) be any function regular in | z | < 1 and satisfying 1.1.
Suppose that f(z) can be continued beyond | z | = 1 into a domain containing
an arc of the length 2p around 1, that is, into a domain containing the numbers
(| t] < p). Then, writing

«©

f@ =Y a@)E— ) 0<8 <1 (1.2)

k=0

we have for 0 < 8 < ¢
1 1
‘W—(I—S)IS>1“COSP, (1.3)

where ¢ depends only on the domain into which f(z) can be analytically con-
tinued.

Proof. Without loss of generality we may suppose that (1, 1) holds in a
domain containing the arc €%, (j ¢ | << p). Then, if & is so small that f(z) is
analyticin| z — 8 | << ((cos p — 8)% + sin? p)1/2 = ((1 — 8)2+23(1 —cos p)'/2
and there it satisfies (1.1), we have

®) =517 | L e . (14

where ¢ is the circle | ¢ — 6| = ((I — 6)® 4 25(1 — cos p). Hence

o <[0 =1+ 12250 —oen) T

which proves (1.3).

Now we are able to finish our proof. Let f(z) be a function satisfying the
conditions of Theorem 1.

Let (here and in the sequel) & denote a natural number belonging to the

subsequence satisfying (5), (6), and (7).
Then we have

ana® =] (o sy ) 85 el

I>(1-6,)k

83l
87c

= €y ((1 —ks,c) 0
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Estimating the term (i;_§,,)83" by Stirling’s formula (which is possible
if 8,k = M, where M “large” but fixed) we obtain

1 1 H
Qmy R (1 = 80177 (M)

‘ a(xwak)k(szc)i = em(l — Sze)p(l‘ﬁk)k
Hence

o N -1/ (18 1
s < (1 — 8 exp (— sy los < + loga,

— Llog 2m(l — 8 M) ,

or
; =1/ (18, % I
a(l‘ak)k(a)\ BE_ (1 — &) S_k
. log M loge | log2m(l — &) 25 SAN |
<=8 — T 4 0 (e )) 5 09

Expressing &, by (7) we obtain for the right-hand side of (1.5) the upper
bound

logM loge | K
4aM M M

By Lemma 1.1 Theorem 1 follows.

2. APPLICATIONS
First, I prove a gap-theorem

THEOREM 2. Suppose that a, = 0(1) and with an infinity of k — s

] ay, l > € l}lfi} ‘ a4 ‘ s (21:}
Sfurther that
a, =0 if 0<]i—k|<N (2.2)

Then any arc of the unit-circle, whose length is greater than

logt? N
o) ~xa 2.3

contains a singularity of f(2).

Remarks (1) The restrictions ¢; = O(1) and (2.1) could be replaced by
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weaker ones at the expense of some calculations; for instance @, = O(1)
could be replaced by ¢; = O(/) and (2.2) by

4 =0 if 0<I—k<AN. 2.2)

Since the idea of the proof is clearer in the present form and the present
form is sufficient for a further application, I confine myself to this simpler
form. .

(2) Theorem 2 is a result similar to the results of H. Claus [5], but not
contained in them.

Proof. 1 have to show the existence of §; — s satisfying (6) and
k8 = N. 2.4)

To this end I use probability theory. Let 6 be a number 0 < 6 <C 1, which
will be determined later. Further let ¢ be a random variable with

P(E = m) = (I — §)a—or (8 - g;]f T rn =0,1,..) 29)

(where 8 is chosen such that k8 is a natural number)
First I calculate the expectation E(£) and variance D*(€). An easy cal-
culation gives

E@) = ok 2.6)

G @7

Cebyshev’s inequality, applied to ¢ yields

((1—8)k+m

m -2 _ —(1-8)k
Y )5 < A1 — §)--dk

fm—8T|>A(%8 /(1—8))L/2
or, putting A = N((1 — 8)/8k)*/>

Sk_ 5 (1 — §)-a-or (2.8)

((1 — 0 k+m
N2(1

o™ <
|m——%}>N (1 - 8) k )

On the other hand, we have by Stirling’s formula,

k %6 1 1 1 1
((1 —0) k) 6% ~ (1 = 8% (2m)i2 (1 — S)72 (ko) - 2.9)

Therefore if 6k = ¢ N*/* with some sufficiently small ¢’ depending only
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on ¢ of (2.1), then (6) and all the assumptions of Theorem 1 are satisfied.
Therefore the interval
(log N)'

ez’i’ f ” < 02(5) “Nz/g

contains a singular point. Since f(z), and also f{e*¥z), satisfies the conditions
{2.1) and (2.2), any arc of the unit circle of the length c,(e)[(log N¥/2/N2/3]
contains a singular point, which proves our Theorem 2.

As an application of Theorem 2 [ give a new proof of the following
theorem.

Tueorem 3 (G. Szego [8] see also Duffin and Schaeffer 19]). Let f{z) be a
power-series whose coefficients take only a finite set of values. Then either
f(2) = #(2)/(1 — z™), where w(z) is a polynomial or f(z) cannot be continued
beyond |z} = 1.

Proof. Letd, ,d, ... d, be the values which can be taken. Then the number
of all ¥ tuples which can be taken is

vy,

Denote by Ay, the N-tuple (@, , i1 " tnyn_y) and by D, - D, its possible
values. Since there are »V values for the 4, , in any interval (n, #n + »7},
there must be at least one D; which is taken by two different 4 , . By the
pigeon-hole principle either there is p, 0 < p <", such that

Ay = Ax.nsos (2.10)
or there are an infinity of » such that (2.10) holds but

AN+1,n 7‘L‘ AN+1,7L+D .
Then

fD) =01 —27)f(z) = i (@ —a_ )zt = i aPzt
=0 =0

has an infinity of gaps of length N, and fi(z) == 7(z). Now using the same
argument again we obtain the existence of a polynomial =(z) of degree
< N2 and of

A = @D AD = T a2,

=0

for which there is an infinity of k — s &k, &, - such that

a, = o) 2.1
a, = ¢, (2.1
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and

a,:0f0r0<ll—k]<g;

therefore by Theorem 2 any arc of | z | = 1 of length at least ¢ (log N)/N2/3)1/2
contains a singularity of f,(2), that is, of f(z). Since N can be taken arbitrarily
large, Szeg6’s theorem follows.
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