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A classical theorem of Hadamard ([1], see also Titchmarsh [2]) states the
following: Let

OJ

fez) = I akzk
k~O

be a power-series with radius of convergence 1. Further, suppose that

where k 1 , k 2 , ••• is a subsequence of 1, 2, 3,... satisfying the condition

kk+1 ?' e> 1. (1)
n

Then the circle I z I = 1 is the natural boundary of fez).
There are several proofs and generalizations of this result. I mention

Fabry's gap theorem replacing (1) by the weaker condition

k n
-4- 00 as n -4- 00. (2)

n

For a proof see Landau [3], p. 76. It is known that (2) cannot be replaced
by the still weaker condition

(3)

see L. Ilieff [4], p. 3. On the other hand, one can ask whether (2) can be
replaced by a weaker condition while. imposing conditions on the non
vanishing coefficients. Results in this direction have been obtained by
R. P. Boas [5] and H. Claus [6].

In a recent paper [7] I gave a proof of Hadamard's gap theorem based
only on Stirlings formula. Now I prove a "finite form" of a gap theorem.
The main result of the present paper is the following.
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THEOREM 1. Let fez) = L:~o akzk be a power-series with radius of con
vergence 1. Suppose that

Denote by ak(o) the kth coefficient of the power series of fez) about the
point 0, where 0 < 0 < 1. Suppose that there is a subsequence k 1 , k 2 , •.•

the sequence of natural numbers such that

and with some E > 0

Ok being a number satisfying kOk = M k (Mk is a natural number) and

Then the arc of the unit circle eit with

I ( log M - log E )l i2
I t 1< C1 M

contains at least one singularity offez); here c, is an absolute constant.
It is easy to see that if there are "sufficiently long" gaps in the power

series fez), then a dominance of the type (6) will occur. The dominance of
type (6) with arbitrary large M assumes that z = 1 is a singular point.

As an application of Theorem 1, I show that for fez) whose coefficients
satisfy (4), and (7) the condition (3) assures non-continuability. Further I
give a new proof of Szego's theorem [8], according to which a power-series
whose coefficients take only a finite set of values, is either a rational function
of a special kind or cannot be continued beyond i z [ = 1. Section 1 contains
the proof of Theorem 1, Section 2 some applications.

1. PROOF OF THEOREM

Since the singular points off(z) and

en 1 z

t:o k(k + 1) ...aCk + m + 2) Z7c+
m

+2 = (m + 2)1 fof(t)(z - t)m+2 dt
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coincide, we may suppose without loss of generality that

First, I prove

1 f(z) 1 ~ 1 1z 1< 1.

LEMMA 1.1. Letf(z) be any function regular in I z I < 1 and satisfying 1.1.
Suppose that fez) can be continued beyond I z 1 = 1 into a domain containing
an arc of the length 2p around 1, that is, into a domain containing the numbers
eit(1 t I ~ p). Then, writing

00

fez) = L: ai8)(z - 8)k (0 ~ 8 ~ 1)
k~O

we have for 0 < 8 < E

II ai~)ll/k - (1 - 8) Ii> 1 - cos p,

(1.2)

(1.3)

where E depends only on the domain into which fez) can be analytically con
tinued.

Proof Without loss of generality we may suppose that (1, 1) holds in a
domain containing the arc eit, (I t I ~ p). Then, if 8 is so small thatf(z) is
analytic in I z - 8 I ~ ((cos p - 8)2 + sin2p)1/2 = ((1 - 8)2+28(1-cos p)1/2
and there it satisfies (1.1), we have

1 I j(ep)
ak(8) = 27Ti c (ep _ 8)k+l dep,

where c is the circle 1 ep - 8 1 = ((1 - 8)2 + 28(1 - cos p). Hence

(1.4)

which proves (1.3).
Now we are able to finish our proof. Letf(z) be a function satisfying the

conditions of Theorem 1.
Let (here and in the sequel) k denote a natural number belonging to the

subsequence satisfying (5), (6), and (7).
Then we have
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Estimating the term CI_t)k)8~kk by Stirling's formula (which is possible
if 0kk = M, where M "large" but fixed) we obtain

, (~ )' (1 ~ )-(1-6k)k 1 I 1
I a(r-6k )le Ole I :): Eale - Ok (27T)1/2 (l _ Ok)1/2 . (M)l/2

Hence

I (;I )1- 1 /(1-6k)/, (1 " ) ( 1 (1 + I. a!l-6k )k o/c < - Ole exp - (1 _ Ole) k og E og ale

- t log 27T(l - Ok) M) ,
or

a (O)!-1I(1-6k )le_ (l - °)I~
(1-6k)le k Ok

:s::: (1 _ 0 )( log M _ log E + log 27T(1 - Ok) + 0 f_l_\)) ~ (1.5)
~ k 4k k 2k \ k 2 Ok'

Expressing Ole by (7) we obtain for the right-hand side of (1.5) the upper
bound

log M _ log E -L K -L (1)
4M M' M ,0 .

By Lemma 1.1 Theorem 1 follows.

2. ApPLICATION'S

First, I prove a gap-theorem

TBEOREM 2. Suppose that az = 0(1) and with an infinity of k - s

further that

(2.1)

if O<II-kl~N. (2.2)

Then any arc of the unit-circle, whose length is greater than

(2.3)

contains a singularity offez).

Remarks (1) The restrictions az = 0(1) and (2.1) could be replaced by
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weaker ones at the expense of some calculations; for instance a/ = 0(1)
could be replaced by a/ = 0(1) and (2.2) by

if 0 < 1- k < N. (2.2')

Since the idea of the proof is clearer in the present form and the present
form is sufficient for a further application, I confine myself to this simpler
form.

(2) Theorem 2 is a result similar to the results of H. Claus [5], but not
contained in them.

Proof I have to show the existence of 8k - s satisfying (6) and

ko =N. (2.4)

To this end I use probability theory. Let 0 be a number 0 < 8 < 1, which
will be determined later. Further let g be a random variable with

P( C _ ) _ (1 _ ~)(1-6)k ((1 - 8) k + m) ~m( - 0 1 )s - m - u (1 _ 8) k a m - , ,... , (2.5)

(where 8 is chosen such that k8 is a natural number)
First I calculate the expectation E(g) and variance D2W. An easy cal

culation gives

E(g) = 8k

D2(g)=~
1 - 8

Cebyshev's inequality, applied to g yields

or, putting A = N((l - 8)j8k)1/2

(2.6)

(2.7)

L ((1 - 8) k + m) 8m < 2 8k (1 _ 8)-(1-6)k (2.8)
Im-6k l>N (1 - 8) k N (1 - 8)

On the other hand, we have by Stirling's formula,

(
k ) 8M 1 1 1 1

(1 - 8) k ~ (l - 8)<1-6)k (27T)1/2 (1 - 8)1/2 (k8)1/2 . (2.9)

Therefore if 8k = E'Nz/3 with some sufficiently small E' depending only
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on E of (2.1), then (6) and all the assumptions of Theorem 1 are satisfied.
Therefore the interval

contains a singular point. Sincef(z), and alsof(eiYz), satisfies the conditions
(2.1) and (2.2), any arc of the unit circle of the length C2(E)[(1og Nl/2jN2/3]
contains a singular point, which proves our Theorem 2.

As an application of Theorem 2 I give a new proof of the following
theorem.

THEOREM 3 (G. Szego [8] see also Duffin and Schaeffer [9]). Let fez) be a
power-series whose coefficients take only a finite set of values. Then either
fez) = 77(z)/(1 - zm), where 77(Z) is a polynomial or fez) cannot be continued
beyond i z I = 1.

Proof Let dl , d2 ... dv be the values which can be taken. Then the number
of all N tuples which can be taken is

Denote by the N-tuple (an, aMI'" a n+N - I ) and by DI ... DVN its possible
values. Since there are vN values for the AN •n in any interval (n, n +
there must be at least one D j which is taken by two different A N •n . By the
pigeon-hole principle either there is p, 0 < p :(: vN , such that

(2.

or there are an infinity of n such that (2.10) holds but

Then
OJ OJ

!I(z) = (l - zO)f(z) = L (al - az-o) Zl = I a;*)zl
I~O 1=0

has an infinity of gaps of length N, and !I(z) =1= 77(Z). Now using the same
argument again we obtain the existence of a polynomial 77(Z) of degree
~ NI2 and of

h(Z) = 77(Z),!I(Z) = I a;**l Zl,
I~O

for which there is an infinity of k - s k l , k 2 •.• such that

(2.11 )

(2.11)
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and

P. SZUSZ

N
at = 0 for 0 < I I - k I < 2 ;

therefore by Theorem 2 any arc of I z I = 1 oflength at least c (log N)jN2/3)1/2
contains a singularity of/b), that is, ofj(z). Since N can be taken arbitrarily
large, Szego's theorem follows.
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